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1 INTRODUCTION 

1.1 In order to treat problems of drawing statistical inference in the setting of the 
general theory of stochastic processes (as presented e.g. in Jacod and Shiryaev (1 987) 
or  Liptser and Shiryayev (1989)), the experiment in question is supposed to be a 
filtered probability space with a family of probability measures, and an observed 
object is supposed to be a semimartingale with respect to all these measures. A 
solution then, sought in terms of the predictable characteristics of the observed 
semimartingale, is applicable to various statistical models in discrete or  continuous 
time such as, for instance, the classical independent observations scheme, or those 
risen in regression, time series and survival analysis, where the models are only 
partially specified in terms, e g ,  of the first or second order characteristics (regression 
analysis or  spectral analysis in time series), or the intensity of a counting process (in 
survival analysis). We consider here the asymptotic setting of the problem with the 
observation time (sample size) increasing unboundedly, though adequate considera- 
tions can be carried out for sequences of experiments. 

1.2 In the present paper we restrict our attention to the common situation in 
which the model under consideration admits a finite dimensional parametrization, 
reducing the model identification problem to the statistical estimation of a parameter. 
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Specifically, the following problem of estimation will be treated: deriving in the 
present general setting the Cramer-Rao type lower bound for a class of so-called 
rrqulm- estimators, and indicating particular estimators which attain this bound and 
therefore are optimal. Of course, those are nothing but the maximum likelihood 
estimators (rather a class of estimators asymptotically equivalent to MLE) whenever 
the model is fully specified 2s, fnr instmce, ir? the classim! case c?f independe;;: 
observations from the fully parametrized density. In regression analysis, however, the 
best linear unbiased estimators are sought, i n  time series analysis the so-called 
Gaussian estimators, and in survival analysis the partial likelihood estimators. As 
applied to these special models, our unified approach lcads naturally to the same 
optimal estimators. This is indeed not hard to see by specifying in each special case 
the general notions and results of the present paper, but we purposely avoid here 
these specifications in order to concentrate full attention to the unified setting. 

1.3 As the usual scheme for deriving the Cramer-Rao inequality assumes a full 
parametrization of an experiment (see e.g. Tbragimov and Has'minskii (1981), 1.7 and 
11.1 1) and therefore becomes unapplicable here, we need in the first place a proper 
formuiarion of the probiem, which is then simpiy soived by applying the SchwartI 
ific:!!:2!ifxl Tc thi" ,-=, 4 =::-.bcr ,?C - .J - - . . - . , .  ,-4=G=;?; ,--.nc :.. ;$?+<-.-.,4>..-..-..J .'.-... +-:,.::*-,- *L- . . - 7-'-..--,. iiiiz r.lu . . U I A 1  V *  &iiqiiLZ:i U I ' . ' . I C . " . I U  i:7 IIIII C I C I I I I L U  I L I ) L 1 I L L 1 1 1 #  I I IL - 
c l a s  of considered estimators, which ctherwse are viewcd as arbitrary processcs <if 

the same dimension as the parameter itself. calculable from observations. 
Firstly, using the observations of the semimartingale, we form all kinds of local 

martingales as the stochastic integrals with respect to this semimartingale (in 
statistical context the corresponding predictable integrands are usually called the 
scoring functions), and then use them for estimation; cf. Jacod (1990) and the references 
therein, in particular Godambe and Heyde (1990). Greenwood and Wefelmeyer 
(1989), Gushchin (1990), Sorensen (1990). Due to the reprrsentution propertjl (see e.g. 
Jacod and Shiryaev (1987), 111.4) all local martingales arc representah!e as s x h  
integrais pius, perhaps, some orthogonai term wh~ch wlll be assumed negligible in 
the sense indicated below. Besides, a local martingale used is assumed square 
inlegra"ule, which means according io iipiser and Shiryayev (i989j, Lemma Iii.5.i, 
assertion 3. that a possible extra term is also assumed to be negligible. Specifically, 
for each fixed value of the parameter all estimators considered admit a martingale 
representation in the sense that they can be represented, after an appropriate centering 
and scaling, as a certain square integrable margingale plus a remainder term 
(absorbing eventually negligible terms mentioned above), which can be ignored when 
determining the principal part of estimation precision (see 1.4 below). Accordingly. 
we say that two estimators are asymptoticully equiculent if they have one and the 
same martingale representation (with different remainders, of ceurse). Hence, a 
particuiar scoring function defines a class uf asymptotically equivalent estimators. 

S ~ c d ! y ,  !he f2ct that the mode! is not Fd!!j: dcfincd zntaik here that we carr use 
oniy certain integrais with respect to the observed semimartingale (cf. regression and 
time series where only the linear and, respectively, quadratic forms from observations 
are admissible). The margingales so obtained, as well as corresponding scoring 
functions, are called admissible. Correspondingly, an estimator is called udmissihle if 
it has the martingale representation with an admissible martingale. 
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1.4 The principal part of estimation precision then is naturall:; determined by the 
scaling factor and the sharp brackets of the involved martingale in the form of a 
dispersion ellipsoid, called below the spread of an estimator. By applying the 
Schwartz inequality we get the lower bound for the spread of all admissible 
estimators. As a side remark we notice that even superefficient estimators obey this 
lower bound. In order to give the lower bound the usual Cramer-Rao form, we have 
to exclude this kind of abnormalities restricting the class of estimators by a certain 
regularity assumption. 

It seems natural to call an admissible estimator with martingale representation for 
each fixed value of the parameter regular if the representation extends to a shrinking 
neighbourhood of the fixed parameter value, with the appropriate shrinkage rate 
related as usual to the growth of information. 

1.5 In view of the fact that the spread of an estimator is defined as an asymptotic 
notion-the principal part of the estimation precision-it makes a sense to assume 
the asymptotic difSerentiability (weakly in the class of all admissible scoring functions; 
see Section 4) of the predicable characteristics of an observed semimartingale. (One 
caii easily trace the simplifications caused by the diEeeren?iabi!i!y assimntion r for a 
fixed sample size like in Jacod (1990); see Ibragimov and Has'minskii (1981). 1.7 for 
the classical result and Barndorff-Nielsen and Sorensen (1990) fbr examples). 

The main statement of the present paper can be described now as follows: under 
the d@eerentiahi!iry condiion Just mentioned, the spread o f  a regular estimator obeys 
the Cramer-Rao lower bound. 

1.6 As was mentioned above, for fully defined models this lower bound is attained 
by a special scoring function, namely that of involved in the likelihood equation. 
Surely, if the solution (approximate, may be) to this equation has the martingale 
representation, then it is an optimal estimator. The question on existence of this 
representation lies beyond the scope of the present paper (see e.g. Ibragimov and 
Has'minskii (1981), 1.8 and 111.1 or Chitashvili et al., 1990). For not necessarily fully 
defined models, however, the optimal scoring function can be viewed as the projection 
of the above scoring function to the space of admissible scoring functions. Note that 
generally the projection operation requires the knowledge of some extra parameters 
which are supposed known or at least estimable by the given sample, as for instance 
in linear regression with independent residuals where the best linear unbiased 
estimator involves the variances of residuales (they cancel only in the i.i.d. case). 

2 PRELIMINARIES 

2.1 Let (52.9, F, Pj  be a stochastic basis with a filtration F = (Pfjf,,. Assume for 
simplicity that Po is trivial P a s .  Let X be an adapted Rd-valued locally square 
integrable semimartingale having on a set RP c R with P (RP) = 1 the Doob-Meyer 
decomposition X = X ,  + M + A with the compensator A ~d,,, and the martingale 
part M = Xc + x * ( p  - v) E dt'~,,. As usual Xc and p are the continuous part and the 
jump measure of X with the quadratic variation C and the compensator v respectively, 
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chosen to satisfy the following relations: for each r E B(R+)  

V(W, x (0)) = 0, u,(w) = V(W, {t) x Rd) < 1 indentically and C = c . t' (2.1.1) 

with a continuous increasing process 1: and a nonnegative definite Rd x Rd-matrix 
valued predictable process c (see Jacod and Shiryaev (1987), Section 11.2 for more 
details). Then the quadrat~c variation of M is ( M )  = C + xxT* v - [ A ] .  

2.2 With the continuous part X'E ,J/i,, we may associate the linear space L2(Xc) 
of all R' x Rd-valued predictable processes H  such that H c H ~ . V  E d&; see Jacod 
and Shiryaev (1987), Section III.4a. For H E  L2(Xc) we define the stochastic integral 
H .  Xc as in Jacod and Shiryaev (1987), Theorem 111.4.5. For Rk x Rd-matrix valued 
predictable processes H and K with rows in L2(Xc) we have 

2.3 Denote a = l I  x R+ x Rd and $ = 9 @ a  (Rd) where .Y is the predictable 
a-field on Q x ;i;p Lr! I.t !x a 2-measurable function on a scch that fcr e ~ c h  
Markov time T 

Associate with it the predictable process 

R(w) = W(W, t, X)V(W; { t )  x dx), S 
and note that a = 1 by (2.1.1), If G2(W)e .d;, with 

then we say W E  9:,,(p). If W  is Rk-vector valued with components in 9ic(p), then 

and for a couple Wand U 

( W * (p - v), U * (p - v)), = WUT * v, - 1 fis 0:. 
S S f  

(cf. (2.3.1)) and 

W U T * v , = ( W * ( p - v ) , U * ( p - v ) ) ,  with m= W + 1 {  ,,,, ~ ( 1 - a ) .  (2.3.2) 
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2.4 For brevity, use the following notations for H E  LZ(Xc)  and W E  9 i , ( p ) :  

M(H,  W )  = H . X f  + W * ( p  - v) and a ( ~ ,  W )  = H - X c  + m * ( p  - v) .  (2.4.1) 

By (2.2.1) and (2.3.2) 

( M ( H ,  W ) ,  M ( K ,  U ) ) ,  = H C K ' . ~ ,  + W U r * v , ,  (2.4.2) 

while 

( a ( H ,  W )  - M(H, W), M(K,  U ) ) ,  = 1 Ps 0: (2.4.3) 
S S l  

and 

( f i ( ~ ,  W ) ,  G ( K ,  U )  - M ( K ,  U ) j ,  = 1 ,,<, ,, ~p~0: / (1  - a,). (2.3.3) 
S 5 . I  

1.5 .4long with any Rd-valtiec! !ncally ~q :n re  integrah!e martingale M E  ..#;c;. 

consider another locally square integrable martingale m E. t+&, of dimension d', say. 
Suppose that the quadratic variation ( M )  is positive definite at t- for t large enough, 
and define the Rd' x Rd'-matrix valued predictable process 

c(m, M )  = ( m )  - (m,  M ) ( M ) - ' ( M ,  m).  (2.5.1) 

In Section 5 we will need the following result concerning c(m, M):  

LEMMA 2.5.i (Dzhaparidze and Spreij ji992jj The process cim, M )  dejned by (2.5.:) 
is non decreasing, and c(m, M )  = 0 i f  there exists a 9-measurable random (d' x d)- 
matrix C  such that m = C M .  

Remark 2.5.2 C need iiot be 90-measura51e. In Dzhaparidze and Spreij (1992) 
this result has been proved for the case where ( M ) - '  does not necessarily exist, and 
is replaced by ( M ) + ,  the Moore-Penrose inverse process. Notice too that even if C 
is not Fo-measurable, it is such that the product C M  is a martingale. 

The process c(m, M )  is not symmetric. Instead we often use the so-called correlation 
process 

which is simply related to c(m, M )  as follows: 

The last inequality follows from the assertion of Lemma 2.5.1. In fact this is just the 
matrix version of the Schwartz inequality. 
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3 PARAMETRIZATION 

3.1 Consider a set of probability measures P. and suppose that under all P E P a 
process X, adapted to a filtered measurable space (R, -F, F, P), is an Rd-valued locally 
squ:tre integrable semim:irtingale. 

r t  . . , : I I  L. .-..--..-... I , L . . ,  .. . .& . .I- L . . L : I : . . .  - ... ... m, . T I  .... . . L -  
1 1  W l l l  UL >UpJA~sGU L l l d l  d SCL U1 p l  U U d U I I I L Y  I I I C d S U I  C 3  L v  d l l U W S  LllC p i ( l d l l l C L 1  l~ ' . i lLlUIl  

to be described in the present section. 
3.2 For a lixed P E  P we single out in the linear spaces of integrands L 2 ( X ' ;  P) 

and 9k, ( ,~r ;  P), introduced in 2.2 and 2.3 respectively, the subspaces Y/  c L'(,Y'; P) 
and % c '%',',,(p; Pj for aii P E  P, reiated by the condiiion that aiso f i x  E Y i .  For each 
H E  .Y to have that I&'' E W ; see (2.3.2). 

Since for all P E  P the integrals H -  AP and U * vP with H E  .iY' and U = 

W - Hx E ft are well defined, fixing P, P' E P we may introduce the process 

and hence 

by definition in 2.4. In this case y P . P ' ( H ,  W) is the Girsanov correction term. Indeed, 
i i~c  ciensiiy process of P' E IP reiative to P, positive r"'-as. for aii r E R + , is ihen ihe 
Dolean's exponential of the P-martingale f i P  = f iP( l j ,  Y - 1 )  where P E L ' ( X C ;  P) 
satisfies (x" , fi') = cp/ j" . 11 and Y - 1 defined by v" = Y - v", is such that 

where up' and u p  are defined b y  (2 .1 .1)  relative to P and P' respectively; see Jacod 
and Shiryaev (1987), 111.5. Under these circumstances one can apply Girsanov's 
theorem as in Jacod and Shiryaev (1987), Lemma TV.3.19, to get 

Hence (3.2.3) holds with Girsanov's correction term 

The last equality is verified by (2.4.2),  (3.2.1),  (3.2.3) and (3.2.4).  It should be noted in 
addition that in the most general case where the local domination property does not 
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necessarily hold, Eq. (3.2.5) takes a more complicated form involving certain correc- 
tion terms; see Jacod (1990) or Jacod and Shiryaev (1987), IV.3. 

3.3 Turning back to the restrictions imposed on the sets X and %-, we suppose 
that for all P E  P and 

H E H c L'(XC; P), W E Yt ' c 9;&; P) 

and all t large enough (MP), > 0 P-as. where M P  = MP(H,  W) ,  and that 

9{(MP);'I2Mf: t large enough1 P )  

is relatively compact with non degenerate limit points. 
For all P E P' define the subset [PI of P by 

Hence we have gP."(H. W) = O for each P'E [PI .  H E fi and W E  W (see (3.2.1)). 
Therefore on a set RP n RP' we have by (3.2.2) that MP(H, W) = MP'(H, W) for each 
P 1 e [ P ] ,  H E X  and W E  #'. 

Suppose now that [PI  = ( [ P I :  P E P }  allows a finite dimensional parametrization: 
there exists a one to one mapping 

Thus, hy definition of [PI  (see (3.3.1)) this mapping induces only a partial 
parametrization upon the characteristics in 2.1 of the observed semimartingale X. In 
fact only integrals of type 

H. A' and W *  ve for H E i?? and W E  W ,  (3.3.3) 

in particular @e and ae = fe, are fully parametrized: apart from integrands H E i?? 
and W E  W -  they depend on a parameter value 8 E O only. Here and elsewhere below 
we substitute the index P by 8 whenever P E [PI = 9-'(e) for some 8 E 0. 

3.4 We want to stress that our knowledge of P is expressed by the finite 
dimensional parametrization (3.3.2) in terms of the functional form of the integrals 
(3.3.3) only, with integrands H E  i?? and W E  W. The problem of identifying the sets 
[PI ,  PE P is then equivalent to estimating 8. Therefore, we say that the family of 
Rk-valued martingale transforms 

we will deal with in the sequel, is admissible for the above estimation problem if 
H E  % and W E  W, that is Wk x Wd-matrix valued H's and Rk-vector valued W s  in 
(3.4.1) consist of Rd-valued columns in YE' and components in W respectively. 
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3.5 We close this section with an important observation. Suppose we have 
parametrized the integrals (3.3.3), that is we have specified the functional dependence 
of these integrals on H. In the practical situation one does this for all W E R .  In a 
more sophisticated way one might then say that all measures P 6 [PI = 9- ' (0)  solve 
a martingale problem that is farmulated by imposing that the integrals (3.3.3) are 
Compiisaiiirs of ceriain processes. Eience we are in a sense in this section in a converse 
situation as in Section 2. There the measures P define on the sets Q P  the characteristics 
which can be changed arbitrarily outside t h ~ s  set, whereas here we have candidates 
for the characteristics, depending on 0, and we assume that there are measures P 
such ihai under these measures the candidates are indeed versions of the characteris- 
tics. As the consequence of this set up the processes gP.", now denoted by are 
defined on the whole set R and we may assume that Eqs. (3.2.3) and (3.4.1) are also 
valid on the whole set Q. 

This approach can be applied also to the situation where the measures are mutually 
singular (as, for instance, in case of X !  = H(t + w,!. where w is a standard Brownian 
motion under all measures in [PI - 3 '((1): here A: is defined to be fit. and of course 
*,fa = v Ll'  :" &L..- . AT, - V L  15 L I K I I  a ijxiiiii~gaic under any ii E [ P I  = 9 ' ( v ) ) .  

4 ASYMPTOTIC DIFFERENTIABILITY 

4.1 Let 9, be a certain predictable Rk x Rk-matrix valued symmetric positive definite 
process, used below as a norming factor. It may depend on the parameter V but this 
is irrelevant in the present context; see definition 4.l.l(iii) where d, is specified, as 
well as another norming factor t,b which is of the same type, but unlike 4 it may 
depend on particular H G 3V' and W E  W' involved in definition 4.1 . l ,  so that 
$ = $(H-, -wj. 

To a fixed H E  O relate the set of directions "I//, = < h c  '(O - P!, and assume for 
simplicity that a perturbation H + @,u considered below of a parameter value U in a 
direction u is again a parameter value: 0 + q5,u E O. Furthermore, considering below 
any parametrized predictable prncrss {a,!P!j ~ ? ! r  ~ i ! !  z!srizyr assume that 'a  t 1 ( 8  1 &,u)] 
is a well defined predictable process. 

DEFINITION 4.1.1 For each fixed V E O and each direction u E O!lt the compensators 
A' and vu are called asymptotically differentiable (weakly in .X' and W ,  with norming 
factors and I,//) if there exist an Rk x Rd-matrix valued predictable process be E ,fl 
and Rk-vector valued predictable process / l e €  % ' such that for each Rk x Rd-matrix 
valued H G .# and Rk-vector valued W 6 W' all integrals introduced below are well 
defined and in probability P for all P E  [PI = 9 ' ( H )  we have as t + .x, that 

i) $, CZ' * (vH @.'I - v H ) ,  - PVAQT * v;$, u -+ 0, 

ii) I/I, H . (A"@'" - A")), - $ , ( ~ c ~ b " " .  v ,  + Hx/lU' * vB)q5, u +  0 and 

iii) the norming factors 4 and $ are such that cD, -. @ and Y, -+ Y where @ and 
Y = Y ( H ,  W) are certain non singular (random) matrices, while 

@ = (h?)'/'q5 and Y = $(M)''' 
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with (cf. (2.4.2H2.4.4)) 

and 

Here and elswhere below we usually use the following arbridged notation 

M = M' = Mu(H, W) and A? = h? = fi8(bu, A'). 

4.2 The choice of the norming factors rt, and i,b in (iii)? with the same asymptotic 
behaviour as ( A ? - ' / 2  and (MI-'I2 respectively, is motivated as follows. 

Define first A" = A" .x * v H .  Note that -(Ae - !i") = xco' - X" on the set where 
(3.1.2)  hoids. Then iil and iiii in Dennition 4.i.i are equivakni io (i) and 

(ii) $,{H .(A8+*"' - - Hc"haT. n,qb,u) + U 

in probability P E [PI = 9 - '(0). Next, by (3.2.3) 

so that (i) and (ii') are equivalent to 

with 

cf. (2.4.2) and (2.3.2) with j8 = AU + l(Uo, ,, JU,/(l - as). Due to (2.4.1) and (4.2.1) 

hence (4.2.2) in turn is equivalent to 

t,hr <u .8+d1u(~ ,  WJt + 0 as t + oo in probability P E [PI = 9 - '(0) (4.2.3) 

where 

( " , u ' ( ~ ,  W) = M"'(H, W) - M'(H, W) + (M, A)(0' - 0). (4.2.4) 

Thus, we have shown that the following statement is true. 
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STATEMENT 4.2.1 The asymptotic diferentiahiliry at 0 E O and each direction u E iP, 
of the compensators A D  and v8 ( in  the sense of Definition 4.1 . l )  is equicale~z: :o (4.2.3). 

Turning back to the choice of the norming factors q5 and t,h. observe that since we 
are interested in wruk differentiability of the functionals A' and vu (or equivalently, 
A0 and ve)  acting on ( H ,  Ctr), the natural scaling of the differences H .  (A9' - Ae) and 
W * (!lo - \,') (ST equ:va!er,t!j. of :he d;ffc;ci-,ce jYf9 - :"f8 = - Y H H  j SilOUi(i be reiated 
to an L2-norm of the pair (H, W). The reasonable choice is then a positive definite 
square root of the predic!ab!e precess ( M ) ;  cf. (42.3). This explains tiie choice uf t,h. 
Furthermore, in order to give the weak asymptotic derivative a sensible meaning the 
norming process q5 has to be such that the scaled difference 

is bounded by a finite random variable P E  [PI = 9-'(0)-as.  But then, if differenti- 
ability (that is (4.2.3)) holds also t j , ( R f .  lo\,q5, is bounded in the same way. Again, 
exploiting the fact that we require ~ t w k  di.rferen?izbi!it:', Ire hdve ts choose thc 
n a m i n g  $ such !hat these quantities are bounded no iiiaiier what ii and ft'are. But 
then ,  ;;sing Sr:hii.arlz iiiequ&iY c::r mair;ces :hc osij; ;;a4 i,, gL,ald,l;ct. ( i l l a  1s by 
chmsing q5 such that 4,(1G),q5, is bounded as in (iiij, Certainiy, to make the notion 
of differentiability the strongest possible we should require that 4, tends to 7ero, bat 
nor too fast, otherwise this would render the notion vacuous. 

For the sake of simplicity the norming factors 4 and I) in (iii) will be identified 
below with ( A ? ' . 2  and (M) l 2  respectively, as the necessary modifications to the 
general case are obvious. The relation (4.2.2) for instance can be rewritten then as 
foiiows: 

where p = p(M,  12fi) is the correlation process between nil and a; see (2.5.2). 
4.1 As was mentioned in Section 3.2, in the specific situation in which the model 

is fully parametrized and all measures involved are  mrltually !oca!!y abss.!cte!g 
continuous, Girsanov's theorem applies and the process go%" is Girsanov's correction 
term. Hence for instance be in Definition 4.1.1 is the derivative in the above sense of 
Be that replaces B in the definition of the martingale a'(/?, Y - 1). Similarly, in this 
case 3,' can be interpreted as "logarithmic derivative" of vs. Moreover, (A?)  is the 
genuine Fisher information process (see Jacod (1990)). 

5 ADMISSIBLE ESTIMATORS 

5.1 To estimate the unknown parameter value 6' E O c Rk at time instant t, a certain 
class of *-adapted statistics. say {it,\, is considered as a class of potential estimators. 
We consider here an asymptotic setting of the estimation problem by assuming that 
when t + x an estimator 0, "estimates" the unknown parameter value 8 in the sense 
that the appropriately scaled difference B,(O, - 8)  has a non degenerate limit 
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distribution, where the scaling .8, is a Rk x Rk-matrix valued predictable process, 
non singular P E  [PI = 9-'(8)-a.s. for r large enough (depending usually on the 
parameter 8 but this is irrelevant in the present context). For the sake of generality, 
however, we do not exclude the possibility of a certain bias in estimation by taking 
into consideration also estimators 4, for which the limiting distribution of the scaled 
difference d,(8, - a,(@) is non degenerate with a certain deterministic function 
a,: 8 + agk for each fixed t ,  vioiating the condition 

We will say that such estimators 8, are (asymptotically) biased. The difference 

will be called the (asymptotic) bias of 4,. Accordingly, we will say that an estimator 
6, is ~asymptoticallyj unbiased if it "estimates" H in the sense mentioned above, i s .  if 
9,(6,  - 0) has a nnn degenerate limit distribution. 

5.2 In this paper we will restrict our attention to estinlators called admissible as 
they wiil be represented 'oeiow by means 01. admissible 111diIiligd1~~. i f .  (3.4.7 j. X ~ t i  
meanwhile that by this representation we will associate with a particular admissible 
martinoale ~'{ll, W), for fixed H E  .N and WE WlL' a set of asymptotically equivalent 

O--- .': 
estimators [B,(H, W)]. The corresponding H E fl and W E  W '  are usually called the 
scoring .functions. 

DEFINITION 5.2.1 Let B, be as above, and d,(O), 8~ O and Rk-vector valued 
<-adapted process for each fixed H E  O. An (asymptotlcaiiy) unbiased estimator 6, 
of @ is called admissible if it is representable for each fixed 8~ O by means of an 
admissible martingale M8(H, W) = M ~ s  follows: 

with some d, and B, such that 

6(0), = 9?,(d,(O) - 8) + 0 as r + co in probability P E [PI = 9-'(8). (5.2.2) 

An admissible (asymptotically) biased estimator 8, with the bias (5.1.2) is defined 
similarly but with 

6(8), = B,(.d,(O) - a,(%)) + 0 as t + co in probability P E [PI = 9 -  '(8) (5.2.3) 

instead of (5.2.2). 
Obviously, (5.2.1) and (5.2.2) (or (5.2.1) and (5.2.3)) are equivalent to 

~ ~ ( 8 ,  - 8) = M: + ~ ( 0 ) ~  (or ~ ~ ( 8 ,  - a,(8)) = M,B + ~ ( 0 ) ~ )  (5.2.4) 
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*,B,  = g, and +,q(O), = 6(8), + 0 (5.2.5) 

as in (5.2.2) (or (5.2.3)).  Recall that t,h = ( M e ) - " 2 ;  cf. the last paragraph in 4.2. Of 
course, if the asymptotic bias (5.1.2) is small in the sense of (5.1.1), then the two 
expressions in (5.2.4) are equivalent. 

5.3 By the assumptions imposed in 3.1 on the right hand side of the representation 
(5.2.1) the scaling factor 2 characterizes the convergence rate of the estimator 8, and 
for r large enough the ellipsoid generated by the inverse of the symmetric matrix 

characterizes the sprrud of 8 around 8. 

DEFINITION 5.3.1 Let 6 be an admissible estimator of Cf for each fixed O E  O (see 
Definition 5.2.1 ). For fixed r large enough the ellipsoid generated by the inverse of 
the matrix (5.3.1) with 28 involved in (5.2.1) is called the spread of 4 around 0 or a , (@ 
depending whether 8 is asymptotically unbiased or biased. In the latter case the 
syrrud of 8 around 0 is defined as ihe eiiipsoid generated by the matrix 

for the bias (5.1.2) which violates the Condition (5.1.1) has to be taken into account. 
5.4 Denote 

where fi = a e ( h e ,  ,Ie) as in 4.1. By Lemma 2.5.1 we have 

(.(a, M )  = ( f i )  - (a, M ) ( M )  - ' ( M ,  f i )  2 0. 

Therefore 

( = (I + ( )  - c M ) ) (  + D )  2 ( I  + D ) ) (  + D ) .  (5.4.2) 

This means that the spread of 8, around 0 (or a,(@)) exceeds the ellipsoid generated 
by the matrix on the right hand side of the last inequality. This lower bound for the 
spread around 0 (or a,(O)) of any admissible estimator lies at the basis of the 
Cramer-Rao inequality which will be obtained in Section 6. Meanwhile, even the 
spread of supperefficient estimators satisfy (5.4.2). In order to exclude such abnormali- 
ties and, consequently, render the inequality (5.4.2) in the usual Cramer-Rao form, 
we shall, according to the common practice, restrict the class of estimators by certain 
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regularity assumptions; see 6.1 below. Since (G)  can be interpreted in the present 
setting as the Fisher information matrix (see Section 4.3), we say that the inequality 
(5.4.2) takes usual Cramer Rao form if the matrix D on the right hand side is replaced 
by the "derivative" (in the sense of Remark 6.1.2 below) of the bias (5.1.2) with respect 
to 0; see (6.2.2) below. Consider for instance the following situation. We will return 
tc! this situation in Section 6.2. 

5.5 The inequaiiiy (5.4.21 aircaciy gives ilie dcsired Ciamci Rao lovm beund fer 
estimators admitting the representation 

i.e. the representation (5.2.4) with special B = (M, fi) and u(0) = 0, for in this case 
D = 0 and hence 

Note tha t  the matrix valued process D is re!ated !o the bias of an admissible c s tha to r  
O in the fcl!owiag sense. i f  an esiimaior satisfies (5.5.1); then D = O and d(H! = 0, so 
[}la[ by i&L,.lj d!id (5.2.3; i; ;I;<; ;a;is$cs ;he fsilo-,ying fcr each Q' @ 

-8.0 + +,u Next, evaluate (5.5.3) at 0' = ti + @,u under condition (4.2.3) to see that 5 has 
the same behaviour when t -+ oo as g(@, i.e. it can be absorbed in the remainder term. 
Thus the estimator 6 has the linear representation not only at 0 but also in its 
neighbourhood 0' = 8 + 4,u. 

Now, assume D does not vanish, then the bias appears in the representation, as 
even if dl@ = 0 we get by i4.2.4) and i5.2.4) that 

~ ~ ( 8 ,  - [Q' + Dl(@ - H ) ] )  = MH'(H, W), - c"." (H, W), + ,I(@, 

where -t8."(H7 W )  + ~ ( 0 )  at H' = 0 + q5:u can be considered as a remainder term. 
5.6 According to Lemma 2.5.1, we get equality in (5.4.2) iff ,@ = CM with some 

random matrix C, not depending on time. Hence equality in (5.4.2) is only attained 
for estimators that have the representation (5.2.4) of the following special form: 

Notice that Cy(0), is indeed a remainder term in the sense of (5.2.5): since now 

(see Dzhaparidze and Spreij (1992)), we immediately get 

(Ctl(@JT(-&I); 'Cvl(0), + 0 as t -+ oo in probability P E [PI = 9 ' ( 0 ) .  
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6 REGULAR ESTIMATORS. THE CRAMER-RAO INEQUALITY 

6.1 As is known in classical statistics, the minimization problem of the spread of an 
estimator by proving the Cramer-Rao inequality (see. e.g. Ibragimov and Has'minskii 
(1981), o r  in a more related context, Kutoyants (1984) and Jacod (1990). as well as 
the references therein) can be effectively solved only under certain regularity condi- 
*: - - - . - - - - uuua ~ I I I ~ ~ X C I  oii esiiiiiaioi-s. in fully (or partially) specified modeis with LAW 
property, more sophisticated Hajek's type regularity is required. As our parametriza- 
tion in Section 3 admits siich iiiodels only as special cases, and besides our 
assumptions are too wide to admit establishing asymptotic distributions of estima- 
tors, Hajek's definition cannot be taken over here. However our definition of 
regularity can be, in principle, considered as a wide sense version of Hajek's regularity, 
but we don't dwell on this subject here. On the other hand our scheme includes also 
classical regression models in which the Gauss-Markov estimator has minimal spread 
as t + cc among asymptotically linear unbiased estimators (there is a certain 
relationship between our definition of regularity and the asymptotic unbiasedness of 
estimators, but again we prefer to avoid this subiect here). 

The common idca hidden behind any definition of regularity of estimators 
rcprcscntabic as in (5.24; consists. raughij apd&lg. in ddniiiting J ifTac~~iiabi i i i~ i l l  

a certain appropriate sense of the both sides of the representation. Our Definition 
6.1.1 below isAalso based on this consideration. Namely, the class of all admissible 
estimators {[Q,(H, W)], H E X  and WE W'f with the scoring functions H E  %' and 
WE"W. is restricted by the regularity assumption: an estimator 8 , ( ~ ,  W) = 8, with 
the scoring functions H E  A? and WE Y&- assumes the representation of type (5.2.4) 
not only at a fixed I ~ E  0 but also at 13 + 4,u E O with the same 4 as in 4.l(iii) and 
all directions u E %,. 

DEFINITION 6.1.1 An estimator I$~(H> W )  of !he va![!e 0 with scoring functions H E  ,@ 
and WE W, is called regular (with a centering a and scaling B) if 

i) it is representable at each fixed B E  O in all directions u E%, as follows 

~ ~ ( 8 ,  - a,(e + 4, u)) = M~+@!"(H, w), + v(u, 61, (6.1.1) 

where 4 = (h?)-'12; 
ii) the remainder term ~ ( u ,  O), (depending on H E  A? and W E  W of course) is such 

that as t -. co 
t,b,~(u, O), + 0 in probability P E [PI = 9-'(8) (6.1.2) 

where I) = (Me)-'''; 

iii) there exists a function 6: [0, cro) x O + Rd x Rd such that the following holds 
for each fixed 0 E O and all directions u E @,: 

98 t t  cre.e+91u + 0 as t + co in probability P E [PI = 9-'(8) (6.1.3) 

where 
ae.e' = a(@) - a(@ - 6(9)(0' - 13). 
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Remark 6.1.2 The matrix i is the "asymptotic derivative" of a with respect to 8. 
Notice that if the bias (5.1.2) is small in the sense of (5.1.1) not only at a fixed 8 but 
also in a shrinking neighbourhood, that is we may replace here 8 with 9 + d ,u ,  then 
in (6.1.3) we may take ii,(H) = I. 

!?e.mnrk 6 1 . 3  A S  u = 0 we get (5.2.41 with an admissible MYH, U'). Note that 
by (5.2.5) and (6.1.2) the remainder term q(u, O), in (6.1.1) is asymptotically differenti- 
able (in accordance with Definition 4.1) with derivative equal to zero in the 
sense that for each fixed 9 E O and each direction z4 E -'I/, we have that in probability 
P E  [PI = 9-'(9) 

Conversely, if an estimator 8, satisfies (5.2.4) with an addmissible Mo(H. W) and 
certain y(%), then it satisfies also (6.1.1) with y(u, 8) such that 

\ 

& U .  8 - ( 0 )  i f  il.l" - J$ {~ ( t i ' )  - ~ ( 8 j )  
-0  g' . u u. 

I $<*, - ,,,.,".., . I Ct; ,L ! .q 
9 . .  \ - . - . - ,  

with p = p(M, A?); cf. (2.5.2), (4.2.4) and (6.1.4). Therefore the following statement is 
true. 

STATEMENT 6.1.4 I f  the compensators A~ and v%re asymptotically differentiable at 
O E  O and each direction u EU&, in the sense of Definition 4.1.1, then by Statement 4.2.1 
the regularity of 8 is equivalent to the conditioa that the centering (I cmd scaling B 
i m ~ ! w d  in irs representation are such that as t -+ co the last term on the right hand 
side of (6.1.5) vanishes, that is E, -, 0 in probability P E  [PI = K1(8) where E is given 
by (6.1.6). 

6.2 As in Section 5.5, suppose an estimator 8 satisfies the first of expressions 
(5.2.4) with special B = (M, fi) which by (5.4.1) means D = 0, or more generally it 
satisfies the second of expressions (5.2.4) where a($) is differentiable in the sense of 
(6.1.3) with a special B such that 

It follows then from (6.1.5) and (6.1.6) that under the conditions of Statement 6.1.4 
the estimator 8 is regular. Moreover, by (5.4.2) its spread around a($) satisfies the 
Cramer-Rao inequality 
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cf. (5.5.2). Therefore the following question is important. Suppose 8 is regular. Does 
it then admit the representation (5.2.4) with B satisfying (6.2.1)? The answer given in 
the next section turns out to be affirmative if we sharpen Definition 4.1.1 a little bit. 

6.3 Consider a regular estimator 6 ( ~ ,  W )  and suppose that it satisfies (6.1.1) not 
only with 4 = (a)  - ' I 2  but also with 4' = 4p- '  where p = p(M, fi); cf. (2.5.2). Note 
that 44' = 4'ppTqYT I 4'4IT by (2.5.3). Hence the perturbation rate 4' is not faster 
then 4. Cf cotirse, if ihe correlation process p stays bounded away from zero there 
is no need in introducing 4'. Next, suppose that for the scoring functions H and W 
the relation (i) and (ii) in Dcfinition 4.1 are satisfied with 4' instead of 4, that is the 
differentiability still takes place, despite the above remark that the perturbation 
rate 4' is not faster then 4. 
PROPO~~TION 6.3.1 Under the conditions of the present section 

i) 8 admits also the ,following representation 

whrrc ~ ' ( 0 )  is agoin a remainder t m n :  

+t~'(8)r  + O in probability P E [PI = 9 '(8) as t + cc. (6.3.2) 

ii) The spread ?f 8 around a(@) sati$es [he Cramer-Rao inequality (6.2.2). 

Proof Assertion (ii) follows from (i) since by definition the spread of 8 around 
a(0) is generated by the matrix TTT where 

so that 

by Lemma 25.1. 
Let us now prove assertion (i). By (5.2.4) and (6.3.1) we get 

= t+by + j+(M + q) where j = ~ p -  ' ( I  - cp- ')- ' 
with the same E and p as in (6.1.6). Similar to (6.1.6) we immediately obtain that ~ p - '  
and hence j tends to zero in probability P E  [PI = 9-'(8) as t -, co. Therefore (6.3.3) 
yields (6.3.2), for by assumption q is a remainder term and ( + , M , )  is a tight family 
(cf. Section 3.1). 

6.4 Let us turn back to the general case where 8 is a regular estimator in the 
sense of Definition 6.1.1. Regarding a lower bound to the asymptotic spread the 
following proposition is true. 

PROPOSITION 6.4.1 Let 6 he a regular estimator with the spread generated by (gTB)- l. 

Let the compensators A' and vo be asymptotically diferentiable at OEO and each 
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direction u E ~ 2 ,  in the sense of Dejinition 4.1.1. Then for any symmetric positive dejinite 
matrix 6 > 0 the event 

takes place with P E [PI = 9-'(8) probability tending to one as t + sc. 

Proof With the notations used in Statement 6.1.4 we have 

Therefore the event (6.4.1) is equivalent to 

so that the desired assertion follows from (2.5.3) and Statement 6.1.4 according to 
which p,pf  I I and E, + 0 in probability P E [PI = W ' ( 8 ) .  

7 OPTTMALTTY 

7.1 Throughout this section the compensators A' and v%re asymptotically differ- 
entiable at d~ @ and each direction U E * ,  in the sense of Definition 4.1.1, and all 
estimators mentioned are admissible in the sense of Definition 5.2.1. 

The assertions of Propositions 6.3.1 and 6.4.1 can be interpreted as follows: the 
minimal possible spread around a,(@) of a regular estimator is generated by the matrix 

where f i  = @'(be, A') as usual. Hence the following definition 

D E F ~ N I T I ~ N  7.1.1 A regular estimator 8 ( ~ ,  W )  is called optimal if it can be re- 
presented as in (5.2.4) with a,(O) = 8, and if the scoring functions H E  .Y and W E  W 
are such that the spread attains the lower bound which in this case is generated by 
( f i r )  - I .  

PROPOSITION 7.1.2 A regular estimator 8 is optimal in the sense of Definition 7.1.1 f l  
it udmits the following special form of the general representation (5.2.4): 

Proof By definition the spread of an estimator 8 admitting the Representation 
(7.1.1) is generated by ( a ) -  ', i.e. 8 is optimal. 

Conversely, if 8 is optimal, then its spread is generated by the inverse of the matrix 
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In notations of (6.1.6) the equality (7.1.2) means that 

Since 6 is regular. Statement 6.1.4 is true: E,  + O  in probability P E  [PI = X I ( $ ) .  

Hence pTp, 4 I by (7.1.3). Therefore we can apply Proposition 6.3.1. assertion (i) to 
write down the following representation for 6: 

Thus B = (M, A?) in (7.1.2), that is c ( a ,  M), = 0 for all t. By Lemma 2.5.1 this implies 
$ = CM with a possibly random matrix C independent of t. Hence (7.1.4) can be 
rewritten as follows 

- 
cf. i5.5.1;). Sincc C(1C.I. a71) = ( M )  (see Drhaparidze and Spreij (1992)) and Cq is a 
remainder term (see Section 5.5j, ( 7 . 1 3  yields (7.1.1,). 

This paper is largely expository in nature and reflects the viewpoint of the authors on the presented 
subject, discussed with R. J. Chitashvili and J. Jacod at various stages of its preparation. 
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